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Abstract— Although telepresence assistive robots have made
significant progress, they still lack the sense of realism and
physical presence of the remote operator. This results in a lack
of trust and adoption of such robots. In this paper, we introduce
an Avatar Robot System which is a mixed real/virtual robotic
system that physically interacts with a person in proximity of
the robot. The robot structure is overlaid with the 3D model
of the remote caregiver and visualized through Augmented
Reality (AR). In this way, the person receives haptic feedback
as the robot touches him/her. We further present an Optimal
Non-Iterative Alignment solver that solves for the optimally
aligned pose of 3D Human model to the robot (shoulder
to the wrist non-iteratively). The proposed alignment solver
is stateless, achieves optimal alignment and faster than the
baseline solvers (demonstrated in our evaluations). We also
propose an evaluation framework that quantifies the alignment
quality of the solvers through multifaceted metrics. We show
that our solver can consistently produce poses with similar
or superior alignments as IK-based baselines without their
potential drawbacks.

I. INTRODUCTION

In a situation when a person (such as an older adult)
needs physical assistance, a care giver would be required
to provide that support. In remote interactions, physical
assistance should be delivered without degrading the quality
of service. However, providing quality remote service is more
challenging than in-person care. This could be realized by
using a physical agent, i.e. a robot, being operated from
a remote site. However, it might be uncomfortable or even
terrifying to have such robot touch a care recipient’s body.
Rather, it is desirable that a remote caregiver appears to be
in contact with the recipient while the robot is providing the
physical assistance.

Advancements in telepresence assistive robots have en-
abled care givers to remotely monitor and assist patients
during the rehabilitation process by observing and com-
municating with patients in real-time, even if they are not
physically present in the same location. These robots have
been used in a variety of rehabilitation services, including
exercises, stretches, and massages [1]–[3]. They have also
helped patients to improve their mobility and balance by
providing feedback on their movements and posture [4]–[6].
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The research on visual representation of the remote thera-
pist on to the robot has been limited in their ability to display
the remote therapist in the form of 2D screens [1], [2], [7]
or using virtual and augmented reality to display the remote
person [8]–[10]. Even the state of the art telepresence avatar
robots [11]–[13] simply project the avatar (3D human model)
of the remote therapist on to the screens. Hence, there is a
fundamental disconnect in the research literature between the
visual display of the remote care giver on the tele-operated
robot and the actual remote physical therapy performed by
the robot.

In this paper, we aim to bridge this gap by conceptualizing
the development of an Avatar Robot as a mixed real/virtual
assistive tele-operated robot – a physical robot that is overlaid
with the 3D Human model of a remote care giver. Therefore,
the care receiver might feel as though he is in contact with
the remote operator.

Our contributions include:
1) Avatar Robot System: To the best of our knowledge, we

propose the first general purpose end-to-end robotic
system that provides the integration of the trajectory
control of the robot, cross-device pose synchronization,
robot tracking, alignment solver(s), and online 3D
projection overlay using an Augmented Reality (AR)
device; it achieves efficient and reactive real-time pose
synchronization, alignment computation, and overlay
projection.

2) Alignment solver: An optimal non-iterative alignment
solver that solves for the optimally aligned pose of 3D
Human model to the robot (shoulder to the wrist). We
show how existing iterative IK solvers such as Jacobian
DLS [14] and FABRIK [15] can be adapted for this
purpose. Compared to these baselines, our solver is
intuitive, concise, deterministic, singularity-free, and
superior in alignment metrics. We also provide the-
oretical guarantees of the solver;

3) Empirical metrics and evaluation: Set of evaluation
metrics that qualitatively measures the quality of
human-robot alignment from multiple perspectives in-
cluding visual overlap, structural deviation, and model
distortion. Our evaluation metrics could serve as a
benchmark for evaluating future telepresence robots
and their performance.

II. AVATAR ROBOT SYSTEM
An Avatar Robot is a mixed real/virtual robotic system

that physically interacts with a person in proximity of the
robot. As shown in Fig. 1, a remotely operated robot and



the 3D model of a remote operator are incorporated into our
system. The robot structure is overlaid with the 3D model
of the remote caregiver using our solvers and visualized
through Augmented Reality (AR). In this way, the person
receives haptic feedback as the robot is in contact with
him/her. Simultaneously, the person would visually observe
the caregiver’s presence through 3D rendering. Thus, care
receivers will have a highly immersive experience when
haptic stimuli and visual observations are synchronized.

Problem Given a 3D model of a human, obtained from
the 3D scan of the physical therapist (Fig. 1a), and a
dual arm collaborative YuMi robot (Fig. 1b) which can
provide physical assistance to the person. Our objective is to
optimally align and overlay them across their joints, axes and
rotations as the Avatar Robot interacts with the person.(Fig.
1c).

Human Model We prepare the 3D human model from a
photogrammetry scan of a Physical Therapist from Spaulding
Rehabilitation Center, Charlestown, MA. The therapist was
in T-pose at the time of scan, and we manually annotated the
joints of the model so the model can be posed dynamically.
In this research, we are interested in dynamically computing
the pose of the model’s arms to create optimal alignment
with the robot arms, so joints of particular concern are the
shoulder, elbow, and wrist joints on both sides.

Structural Correspondence between the Human Model
and the Robot Since our robot has anthropomorphic arms,
with clearly identifiable “upper arm” and “forearm” seg-
ments, our task is to align the human model’s shoulder, el-
bow, and wrist joints to the corresponding reference positions
on the robot, which we choose to be the center of axis 2, 3, 6
of the robot respectively. A side-to-side comparison between
the arms of our human model and the robot as well as the
reference positions that we chose is shown in Fig. 2.

As a preliminary step of alignment, we also compute the
position and rotation of the entire human model such that
the segment connecting its shoulder joints overlaps and share
the same midpoint with the segment connecting the shoulder
reference positions on the robot. This step ensures the body
/shoulder of the human model is aligned with the body of
the robot at large and allows us to compute the best-aligning
pose of two arms separately.

Defining Input and Output for the Solvers The input
to an alignment solver consists of an joint positions of the
human model in its default (unaligned) configuration and
the reference joint positions of the robot. The output will be
an arm pose for each side, which include the rotations of
joints as well as stretch factor of forearm and upper arm of
the human model. Allowing stretching parts of the human
model risks making the output pose un-anthropormorphic,
but it is necessary for better alignment as the proportions
of robot and human arms are inevitably different (see Fig.
2). We assume that some extent of scaling is acceptable. We
will revisit incorporating scaling and other constraints in the
description of the solvers.

Pipeline The Avatar Robot System integrates the align-
ment solvers into an end-to-end real-time workflow that

(a) 3D Scan of Physical
Therapist

(c) Aligned Human
model over robot

(b) Collaborative
robot (YuMi)

Fig. 1: Aligning Human model with Collaborative robot

comprises trajectory control of the robot, cross-device pose
synchronization, robot tracking, alignment solving, and over-
lay projection. The pipeline of robot System is presented in
Fig. 3. It consists of three components: the robot, the control
station, and the augmented reality (AR) device.

The robot, a dual-arm collaborative robot [16], runs a pose
server and a generic motion server in parallel on each arm,
and communicates with the control station through Ethernet.
The control station stores control scripts that issues specific
trajectory commands to the robot to perform various tasks,
e.g., emulating a rehabilitation therapy. It also collects joint
angles and gripper orientations from both arms at real-time
and hosts a relay server to streatm this information through
the local wireless network. We use HoloLens 2 [17] as the
AR device. The pose of the robot base is tracked using the
camera mounted on the AR device with a computer vision
model. The raw pose estimation is further passed to a low-

human forearm human upper arm
robot forearm robot upper arm

axis 6

axis 3 center

“intersection” of upper arm 
& forearm center lines

human model 
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Fig. 2: Side-by-side comparison of our robot arm and the
arm of our human model. We set the center of axis 2, 3, and
6 of our robot as the shoulder, elbow, and wrist reference
points for the human model. The difference in proportions
of arm segments between the human model and the robot
makes scaling necessary in order to achieve good alignment.
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Fig. 3: The pipeline of our Avatar Robot System. A motion server and a pose server run in parallel on both arms of the
robot. The motion server executes commands from scripts on the control station. The control station also runs a relay that
aggregates joint angles from both arms and stream dual-arm joint poses to the AR device over WLAN. The AR device
converts local-frame joint positions to world-frame by them combining with the pose estimate of the robot from its cameras.
An alignment solver then solves for the human model pose; A gesture mapper maps gripper positions to hand gestures of
the human model. With the arm poses and gesture, the renderer renders the human model accurately over the robot. Joint
poses are synchronized between robot, AR device and the control station at 100Hz, while the rendering is at 60Hz.

pass filter to reduce noises and stuttering. The filtered pose
is combined with the robot-frame joint coordinates retrieved
from the control station real-time to compute the world-frame
joint positions. Our system then computes the shoulder,
elbow, and wrist reference positions for the human model
and aligns its body with the robot. The reference positions
are then passed to a alignment solver, whose pose output is
then fed to the rendering pipeline which renders the human
model and projects it over the robot in front of the patient.

For completeness, we also designed a gripper mapper
module that maps the state of robot gripper into the gesture
of the model. Our gripper is based on a 1DoF linear gripper
with fingers customized to resemble thumb and fingers, so we
map the position of the gripper linearly to the angle between
the thumb and index finger of the model. In practice, this
system can align a human model pose with a robot in real-
time with minimal latency and high accuracy.

III. SOLVERS

In this section, we first explore how existing iterative
Inverse Kinematics (IK) solvers can be adapted to perform
the aforementioned alignment task. Specifically, we show
adaptation of two IK solvers: Jacobian Damped Least Square
[14], commonly used in robotics, and FABRIK [15], com-
monly used in humanoid animation. These solvers serve as
our baselines. We then introduce our optimal non-iterative
alignment (ONIA) solver.

A. Inverse Kinematic Solvers

1) Jacobian (adapted): We first adapted the Jacobian
method with damped least square (DLS) for the alignment
task. Given a parameterization 𝜽 and the current end effector
position 𝒑, the effect of perturbing 𝜽 on 𝒑 can be linearly
approximated by 𝚫 𝒑 = 𝐽𝚫𝜽 in 𝒑’s neighborhood, where 𝐽 is
the Jacobian. Provided with a desired 𝚫 𝒑, Jacobian with DLS
computes 𝚫𝜽 as follows,

𝚫𝜽 = 𝐽T
(
𝐽𝐽T + 𝜆2𝐼

)−1
𝚫 𝒑. (1)

where the hyper-parameter 𝜆 is the damping constant that must
be chosen with care to keep the solver both responsive and
stable.

We model the human arm as the shown in Fig. 4. In
particular, we parameterize the swing of the upper arm
around the shoulder as an exponential map [18], [19]. To
incorporate the reference position of the elbow in Jacobian-
based algorithms, we start by noting that the Jacobian method
is equivalent to gradient descent to the objective

1
2
∥ 𝒑 − 𝒙∥2 (2)

where 𝒙 is the target position. For a joint, 𝒑e, we want to be
close to its reference, 𝒙e, we add the term 1

2𝑤
2
e ∥ 𝒑e − 𝒙e∥2 to

the objective,

1
2
∥ 𝒑 − 𝒙∥2 + 1

2
𝑤2

e ∥ 𝒑e − 𝒙e∥2 =
1
2

[ 𝒑
𝑤e 𝒑e

]
−
[

𝒙
𝑤e𝒙e

]2
(3)



where 𝑤e is a small constant so 1
2𝑤

2
e ∥ 𝒑e − 𝒙e∥2 becomes a

secondary objective. We find 𝑤e = 0.1, 𝜆 = 0.2 to work best.
2) FABRIK (adapted): Forward And Backward Reaching

Inverse Kinematics (FABRIK) is a heuristic-based IK solver
that received wide use in humanoid animation due to its
simplicity and its natural poses [15]. Every iteration of
FABRIK consists of a forward and backward reach that traverse
the kinematic chain in different directions. It repositions a joint
on the line connecting its current position and the preceding
joint’s updated position.

Our adaptation presented here enhances plain FABRIK by
allowing every joints to have a reference positions. It produces
a pose that minimizes the maximum deviation of any joint to
its reference1. Under our adaptation, a joint with a reference
position is given a deviation tolerance 𝜖 . In every iteration, the
joint is re-positioned not on the segment connecting its child
and itself, but on the segment connecting the child and the
point closest to the joint within a radius-𝜖 sphere around the
reference position. This heuristic is intuitive, local, minimal,
easy to implement, and works well empirically. The choice of
𝜖 is critical: if too large, the constraint is too loose to be useful;
if too small, the solver may be unstable due to infeasibility. We
determine the optimal 𝜖 by binary search.

Both Jacobian and FABRIK allow incorporating joint
rotational constraints into the solution. Hence, we explored
adding basic human joint constraints into both baselines: We
allow the upper arm to swing for at most 85◦ in all directions
and twist for ±75◦ relative to the T-pose. The hinge joint
permits rotation from 0 to 150◦ inward, with the T-pose as
the zero reference. These constraints are more permissive than
anatomical ground truth [18] so as not to over-constrain our
model, as alignment is also a tight constraint on its own. We
allow a stretch factor from 0.8 to 1.3 for both upper and forearm
for reasons discussed in section II.

B. Optimal Non-Iterative Alignment Solver

It is helpful when the input robot arm pose is not anthro-
pomorphic to use IK solvers that are generic and consider
joint constraints. However, when the robot arm poses are
anthropomorphic, the benefits of these baseline IK solvers fails
to outweigh their limitations: they are prone to singularities,
and require careful tuning of its hyper parameters to be
stable. We introduce an Optimal, Non-Iterative, Alignment
solver (ONIA) that solves for the optimally aligned pose
from shoulder to the wrist non-iteratively. ONIA is stateless,
achieves optimal alignment and faster than the baseline solvers
(demonstrated in the evaluation section). We describe ONIA’s
design below.

Nomenclature: We begin by defining our notations. Let
R𝒚

𝒙 denote the rotation that rotates 𝒙 to 𝒚 around 𝒙× 𝒚. In other

1We make the remark that a joint with a reference is different from an end
effector with a target, because an end effector is assumed to be always able to
reach its target in FABRIK but it may very well be infeasible for every joint
to be at its reference position, and FABRIK is unstable when confronted with
infeasbility. Hence, plain FABRIK’s ability to handle multiple end effector
does not help in our scenario.
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Fig. 4: The kinematics model. We model the shoulder joint
of a human model as a ball-and-socket joint which can be
decomposed into a swing and a twist [18]. The elbow joint is
composed of a hinge followed by a small of twist around the
forearm. The shoulder of the human model and the robot were
assumed to be aligned initially (see section II). The notations
are used by the description of our non-iterative solver below.

words, R𝒚
𝒙 is the rotation such that

R𝒚
𝒙𝒙 = 𝒚, R𝒚

𝒙 (𝒙 × 𝒚) = 𝒙 × 𝒚. (4)

In addition, let

(𝒙)⊥ 𝒚 = 𝒙 − 𝒙 · 𝒚
∥𝒚∥2 𝒚 (5)

denote the projection of 𝒙 onto the plane normal to 𝒚.
As outlined in section II. The input to ONIA has two parts:

the joint positions of an arm of the human model (in its default
unaligned pose), and the corresponding reference positions of
the robot. For clarity, through out this section, we’ll use the
superscripts ℎ to denote joints from the human model and 𝑟

to denote references positions of the robot. We will also use
subscripts s, e, w, u, f for houlder, elbow, wrist, upper arm,
and forearm. All joints and rotations below are of the human
model unless explicitly specified otherwise. Fig. 4 visualizes
the symbols we used below and presents the kinematic chain
of the human model which ONIA works on.

ONIA aligns the given arm of the human model to an arm of
the robot from shoulder to wrist through the following steps:

a) Computing arm axes: ONIA begins by computing
the arm axes of both the human model and the robot, which
are vector representations of the upper and forearm segments.
Let 𝒙ℎs , 𝒙

ℎ
e and 𝒙ℎw be the positions of the human model’s

shoulder joint, and let 𝒙𝑟e and 𝒙𝑟w be the reference elbow and
wrist positions of the robot. The elbow axes are computed as

𝒅ℎu = 𝒙ℎe − 𝒙ℎs , 𝒅ℎf = 𝒙ℎw − 𝒙ℎe , (6)

𝒅𝑟u = 𝒙𝑟e − 𝒙ℎs , 𝒅𝑟f = 𝒙𝑟w − 𝒙𝑟e . (7)

Note 𝒅𝑟u starts at 𝒙ℎs instead of 𝒙𝑟s (see Fig. 4). Because
the human model’s shoulder width differs from the robot’s
shoulder width. The human model’s and robot’s shoulder joints
cannot be perfectly aligned at the same time. Hence, we use
𝒙ℎs as the basis for guiding rotation of the upper arm.



b) Aligning direction of the upper arm: The direction
of the upper arm is aligned with the reference axis 𝒅𝑟u by
swinging it around the shoulder,

𝑅
swing
s = R𝒅ℎ

u
𝒅𝑟u
. (8)

c) Aligning scale of the upper arm: We further
stretch(shrink) the upper arm segment so that its elbow joint
reaches the reference position 𝒙𝑟e . This is done by computing
the scaling factor 𝑆u,

𝑆u =
∥𝒅𝑟u ∥𝒅ℎu  , (9)

such that
𝒅𝑟u = 𝑅

swing
s (𝑆u𝒅

ℎ
u ). (10)

d) Aligning the elbow axis: Further we twist the the
upper arm so that its elbow axis aligns with the reference
elbow axis of the robot. The elbow axis of a human model’s
arm is the axis around which the elbow rotates, if treated as
a hinge joint. We annotate the elbow axis when prepossessing
the model and denote it as 𝒂ℎ. The reference elbow axis of the
robot is the cross product of its reference arm axes,

𝒂𝑟 = 𝒅𝑟u × 𝒅𝑟f . (11)

Consequently, the twist component of the human arm’s
shoulder joint is

𝑅twist
s = R𝒂𝑟

𝒂ℎ
⊥
, (12)

where 𝒂ℎ⊥ =

(
𝑅

swing
s 𝒂ℎ

)
⊥ 𝒅𝑟u

. (13)

Essentially, we rotate the swung upper arm (and hence its
elbow axis) around itself so the projection of the elbow axis
onto the plane normal to the axis of rotation, 𝒅𝑟u , coincides with
the reference elbow axis 𝒂𝑟 . This minimizes the angle between
the human model’s elbow axis and the reference elbow axis: in
general, given vectors 𝒖, 𝒗, 𝒌 ∈ R3, where 𝒗 can rotate around
𝒌. The angle between 𝒗 and 𝒖 is minimized when (𝒗)⊥ 𝒌 and
(𝒖)⊥ 𝒌 meet.

The overall rotation of the shoulder joint is the composition
of the swing followed by the twist,

𝑅s = 𝑅twist
s 𝑅

swing
s . (14)

We are now done with the shoulder joint and the upper arm
and now move on to the elbow joint and the forearm.

e) Aligning the direction of the forearm: Similar to (8),
we align the forearm — now 𝑅s𝒅

ℎ
f after rotating the shoulder

— by swinging it around the elbow so that it lines up with the
reference forearm axis,

𝑅
swing
e = R

𝒅𝑟f

𝑅s𝒅ℎ
f
𝑅s. (15)

f) Aligning the scale of the forearm: We further stretch
(shrink) the forearm, similar to (9), so that wrist joint of the
human model reaches the reference wrist position. The scaling
factor of the human model’s forearm is computed as

𝑆f =
∥𝒅𝑟f ∥
∥𝒅ℎf ∥

. (16)

g) Aligning the wrist: We set the rotation of the wrist
𝑅w to be the same as the end effector rotation of the robot.

h) Reacting to wrist twist: Finally, we twist the forearm
slightly around itself proportional to the twist of the wrist joint.
This leads to more realistic rendering by enabling the forearm
skin near the elbow to move in response to the wrist twist. We
develop the notion of wrist twist through the following insight:
Suppose in the default configuration of the human model,
there is some “wrist vector” 𝒘 that is roughly perpendicular
to the palm. Then, after the wrist joint rotates by 𝑅w, the twist
component of 𝑅w is the rotation around the forearm axis that
minimizes the angle between 𝒘 and 𝑅w𝒘. Similar to (12),
this is the rotation that brings the projection of the two vectors
together. With this insight, we formulate the proportional twist
of the elbow joint as follows,

𝑅twist
e =

(
R𝒘𝑟

⊥
𝒘ℎ
⊥

)𝛼e
(17)

where 𝒘ℎ
⊥ =

(
𝑅

swing
e 𝒘

)
⊥ 𝒅𝑟f

, 𝒘𝑟
⊥ = (𝑅w𝒘)⊥ 𝒅𝑟f

. (18)

We set 𝛼𝑒 = 0.4 empirically. Together, the overall rotation of
the elbow joint is

𝑅e = 𝑅twist
e 𝑅

swing
e , (19)

This concludes ONIA. Note that in the above procedure, ONIA
starts with the default configuration of the human arm and
is not dependent on the current poses. Being non-iterative
makes the algorithm easy to analyze and ensures a one-to-
one, deterministic mapping from the robot poses to the human
model poses.

ONIA produces optimal alignment in two regards. First, the
swinging ((8) and (15)) and scaling ((9) and (16)) ensures that
the elbow and wrist joints of the human model reaches their
reference positions on the robot exactly. In addition, the twist
in (12) minimizes the angle between the human model’s elbow
axis and the robot’s elbow axis.

IV. EVALUATION

A. Metrics

We define the following metrics in order to evaluate the
performance of the solvers in our Avatar Robot System:

1) Overlay ratio of a solver at a certain frame is defined as

𝑂 ≔
area of robot arms overlaid by human model

total area of robot arms
,

(20)
where “area” is computed from the patient’s perspective,
i.e. the area of projection into patient’s eye view. This
is an intuitive metric of visual alignment: a value of 1
would place all robot arms behind the human model and
only the human model would be visible. We compute the
overlay ratio by replaying sessions in simulations with a
special shader (see Fig. 7).

2) Elbow (wrist) deviation: The elbow deviation Δ𝑥e and
the wrist deviation Δ𝑥w are defined as the distances of
the human model’s elbow and wrist joints from their



Fig. 5: We evaluated the performance of the solvers on a set of
12 poses. We chose these poses because they are representative
of the space of possible arm poses. Pose 1 to 3 all cover
“hands down” but differ in forearm orientations. Pose 4 to
6 likewise covers “hands up”. Pose 8 to 11 covers “arms in
front,” and pose 7 and 12 are T and A-poses. Note that for
the unnatural “hands down” poses, the Jacobian and FABRIK
choose natural-looking approximations while ONIA achieves
best alignment. FABRIK was trapped in a singularity for pose
3. For other poses, all solvers achieve similar alignment, with
ONIA being the fastest. See Fig. 6 for the metrics evaluated at
each pose for every solver. Detailed descriptions and results for
each pose and each solver are available on our online appendix:
https://avatar-robots.github.io/poses
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Fig. 6: Violin plots of performance metrics of solvers evaluated
from 12 poses. The poses are presented in Fig. 5 and marker
colors here matches those in Fig. 5. The minimums, maximums
and medians are marked with black bars. We see that ONIA is
the fastest of all, achieves the best overlay ratio, and scales the
upper arm most conservatively and most consistently.

corresponding reference positions of the robot arm,

Δ𝑥e ≔ ∥𝒙ℎs + 𝑅s (𝑆u𝒅
ℎ
u ) − 𝒙𝑟e ∥, (21)

Δ𝑥w ≔ ∥𝒙ℎs + 𝑅s (𝑆u𝒅
ℎ
u ) + 𝑅e (𝑆f𝒅

ℎ
f ) − 𝒙𝑟w∥. (22)

Smaller deviation should imply better alignment. ONIA
is optimal in a sense by ensuring Δ𝑥e = Δ𝑥w = 0, but
these metrics still help compare other solvers.

3) Upper & forearm shrink/stretch: The scaling factors
of the human model’s arm segments are 𝑆u (9) and 𝑆f
(16). Scaling less aggressively keeps the human model
more anthropomorphic. In our plots we present them by
their absolute differences to 1 (i.e. |𝑆u − 1| and |𝑆f − 1|),
the smaller the difference, the better.

4) Computation time per frame: The average time a
solver spent on computing alignment pose per frame.
Admittedly, the solvers are unlikely to be the perfor-
mance bottleneck of the entire system since rendering
tend to be more resource-intensive. Still, this metric
reflects the complexity of different solvers and a faster,
simpler one should be preferred if multiple solvers align
the human model equally well.

We compute these metrics by logging the robot’s position,
arm poses, and the patient’s perspective (camera transform)
of a session and replaying them later in simulation. This
replay-based approach allows us to compare multiple solvers
controlling for the robot trajectory and patient movement. We
evaluate our solvers with these metrics in two ways.

B. Evaluating solvers on a set of static poses
We evaluated the performance of the three solvers through

a set of 12 static poses, as shown in Fig. 5. Poses are chosen in
group, with each group representative of one partition of the
space of all possible robot arm poses. Poses 1 to 3 covers the
general case of “hands down”, and vary in whether the hand



Fig. 7: The key frames of the emulated therapy session. The first row shows the session as seen from an external camera; The
second row shows the recording of the AR device the user is wearing, which, due to limitation of the recording software, only
captures a small central portion of actual user view; The third row shows the replay scene of the session with ONIA, rendered
with a special shader, where green represents parts of the robot arm covered by the human model, red represents uncovered area
of the robot arm, and blue represents the rest of the human model. The overlay ratio is then the green area over the red and green
area combined. See Fig. 8 for the quantitative analysis. The full video of the session with detailed results can be found in our
online appendix: https://avatar-robots.github.io/sessions/emulated-therapy-session
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Fig. 8: Metrics of all solvers evaluated throughout the therapy
session. ONIA has the highest overlay ratio in average and
runs the fastest. It scales the upper arm similar to FABRIK but
scales the forearm more aggressively, consistent with section
IV-B. FABRIK exhibits poor alignment metrics for initially,
and we find Jacobian to be lagging behind robot movements
even with the smallest damping necessary to keep it stable.

points forward, upright, or backward; Likewise, poses 4 to 6
covers the case of “hands up.”; Poses 8 to 11 covers different
cases where the arms are in front of the body; Poses 7 and 12
are the standard T-pose and A-pose.

We compute metrics for every pose and each solver. The
overlay ratio was evaluated from looking at the robot and
human model from the front (as shown in Fig. 5). We present
the results in Fig. 6.

We noticed that even though computational complexity
varies greatly, all three solvers achieve similar alignment.
Jacobian and FABRIK has similar elbow and wrist deviations.

Alignment was poor for both baselines on poses 1 to 3
(the “hands down”) poses, because these poses are unnatural
for human and lie on the boundary of human anatomical
constraints. Incorporating these constraints, both baseline
solvers produces only natural-looking approximation to the
given robot arm pose. Whether a user prefers visually aligned
or natural-looking pose is the subject of future user studies.
Still, even when excluding the 3 outliers, ONIA achieves the
highest median overlay ratio (hence best visual alignment) 2.
Even without explicit scaling constraints, ONIA solver scales
the upper arm less aggressively and more consistently (low
variance) than both baselines. As of forearm, ONIA tend to
scale more aggressively while Jacobian has the most consistent
scaling. FABRIK was trapped at a singularity for pose 12, as
shown in Fig. 5, with the arm straight and the back of the
elbow facing upwards. In general, we find that FABRIK is more
likely to suffer from such singularities than Jacobian. Being
non-iterative, ONIA runs the fastest, followed by Jacobian
and FABRIK which are each an order of magnitude more
computationally expensive then one another.

C. Evaluating the Avatar Robot System sthrough an emulated
physical therapy session

We further evaluated our solvers through an emulated ther-
apy session: ‘shoulder flexion with elbow extension therapy’
3 In the emulated therapy, we program the robot to follow a
trajectory that guides the user’s forearm to rotate around his
elbow joint. The key frames of the session are shown in Fig. 7,
and the metrics evaluated at every frame for every solver are
presented in Fig. 8.

2Median overlay ratios for 3 solvers excluding poses 1-3 are not shown
in Fig. 6. They are .798, .773, and .783 for ONIA, Jacobian and FABRIK
respectively.

3The full video of the emulated therapy session can be found in
our online appendix: https://avatar-robots.github.io/sessions/
emulated-therapy-session/



We noticed that ONIA has the best average overlay ratio
throughout the session and runs the fastest. It stretches the
upper arm of the model similar to FABRIK but stretches the
forearm more aggressively. These are all consistent with our
previous findings from in section IV-B. Jacobian lagged behind
changes in robot pose, as shown in its spikes of elbow/wrist
deviation when the robot is moving the patient’s arm. This is
caused by the damping factor of DLS. Reducing the damping
further than the current value may improve the responsiveness
of Jacobian but causes instability. The damping also causes
Jacobian to scale the arm segments differently than the other
two solvers did. The left-arm FABRIK solver was caught in
a singularity similar to the one it encountered in the static
pose evaluation. This caused very poor alignment of the left
arm which was reflected in abnormal overlay ratio, elbow/wrist
deviations, and upper arm stretching. FABRIK recovered from
this singularity on its own in the middle of the session and
achieved decent alignment for the second half.

V. LIMITATIONS
We list below the limitations of our approach , which can

provide insights to future investigations:
1) The solvers consider the alignment of each arm sepa-

rately. Future alignment solvers could include dual arm
poses with the torso to improve the alignment.

2) ONIA solver does not limit the scaling of arm segments.
While evaluations show that it produces scaling compa-
rable to the baselines in most cases, excessive scaling as
high as 1.5 is still observed in pose 8 of Fig. 5. It would be
ideal if a scaling limit could be incorporated into future
ONIA versions without significantly compromising its
theoretical guarantees.

3) For this research, we only considered the alignment of
arms between the human model and robot (shoulder,
elbow, and wrist joints). The alignment of the hand
gesture (including the fingers) to the robot’s end effector
needs to be explored in the future;

4) Our evaluation contains objective metrics only. While
this allows precise quantitative analysis of solvers,
we expect to benefit from follow-up user studies that
can provide new insights about patient perceptions.
Subjective evaluations will complement our existing
metrics and provide a more comprehensive evaluation.

VI. CONCLUSION
We presented an Avatar Robot System as a mixed real/virtual

robotic system that aligns the 3D human model (remote
operator) to the robot structure. Therefore, the care receiver
might feel as though they are in close contact with the
remote operator. We proposed a non-iterative alignment solver
that optimally aligns arms poses of the human model with
robot joints. We also proposed a set of evaluation metrics
that quantitatively measures alignment quality. Our evaluation
shows that our non-iterative solver consistently achieves
alignment quality comparable to the baselines, meanwhile
avoiding their limitations such as singularities, instability, and
hyper-parameter sensitivity.
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